MICROPROCESSOR & INTERFACING

Unit-II

INSTRUCTION SETS OF 8085

8085 Addressing modes :

The various ways of specifying data (or operands) for instructions are called as addressing modes.
The 8085 addressing modes are classified into following types:

1. Immediate addressing mode

2. Direct addressing mode

3. Register addressing mode

4. Register indirect addressing mode

5. Implicit addressing mode

(i)Immediate Addressing mode: The mode in which operand is a part of the instruction itself is known as Immediate Addressing mode. If the immediate data is 8-bit, the instruction will be of two bytes. If the immediate data is 16 bit, the instruction is of 3 bytes.

Ex: (1). ADI DATA ; Add data immediately to the contents of the accumulator.
 (2).LXIH 8500H : Load H-L pair immediately with the operand 8500H
 (3). MVI 08H ; Move the data 08 H immediately to the accumulator
 (4). SUI 05H ; Subtract immediately the data 05H from the accumulator

(ii) Direct Addressing mode: The mode of addressing in which the 16-bit address of the operand is directly available in the instruction itself is called Direct Addressing mode. i.e., the address of the operand is available in the instruction itself. This is a 3-byte instruction.

Ex: (1). LDA 9525H; Load the contents of memory location into Accumulator.

 (2). STA 8000H; Store the contents of the Accumulator in the location 8000H

 (3). IN 01H; Read the data from port whose address is 01H.

(iii)Register addressing modes: In this mode, the operands are microprocessor registers only. i.e. the operation is performed within various registers of the microprocessor.

Ex: (1). MOV A, B; Move the contents of B register to A register.

 (2). SUB D; Subtract the contents of D register from Accumulator.

 (3). ADD B, C; Add the contents of C register to the contents of B register.

(iv) Register indirect addressing modes: The 16-bit address location of the operand stored in a register pair (H-L) is given in the instruction. The address of the operand is given in an indirect way with the help of a register pair. So it is called Register indirect addressing mode.

Ex: (1). LXIH 9570H : Load immediate the H-L pair with the address of the location 9570H

 (2)MOV A, M : Move the contents of the memory location pointed by the H-L pair to accumulator

(v) Implicit Addressing mode: The mode of instruction which do not specify the operand in the instruction but it is implicated, is known as implicit addressing mode. i.e., the operand is supposed to be present generally in accumulator.

Ex: (1).CMA; complement the contents of Accumulator

 (2).CMC; Complement carry

 (3). RLC; Rotate Accumulator left by one bit

 (4). RRC; Rotate Accumulator right by one bit

 (5). STC; Set carry.

Instruction and data formats:

The format of a typical instruction is composed of two parts: an operation code or op-code and an operand. Every instruction needs an opcode to specify the operation of the instruction is and then an operand that gives the appropriate data needed for that particular operation code.

Depending upon the size of machine codes, the 8085 instructions are classified into three types.

(a) One byte (single) instructions.

(b)Two byte instructions.

(c) Three byte instructions.

One-byte instructions: A 1 byte instruction include the opcode and the operand in the 8 bits only which is one byte.

Ex: 1. MOV C, A Hex code = 4FH (one byte)

2. ADD B Hex code = 80H (one byte)

3. CMA Hex code = 2FH (one byte)

Two-byte instructions: The two byte instruction is one which contains an 8-bit op-code and 8-bit operand (Data).

Ex: 1. MVI A, 09 Hex code = 3E, 09 (two bytes)

2. ADD B, 07 Hex code = 80, 07 (two bytes)

3. SUB A, 05 Hex code = 97, 05 (two bytes)

Three-byte instructions: In a three byte instruction the first byte is opcode and the second and third bytes are operands i.e. 16-bit data or 16-bit address.

1. LDA 8509 Hex code = 3A, 09, 85 (Three bytes)

2. LXI 2500 Hex code = 21, 00, 25 (Three bytes)

3. STA 2600 Hex code = 32, 00, 26 (Three bytes)

DATA FORMATS:
The 8085 is an 8-bit microprocessor which process only on binary numbers. Since it is very difficult to understand these numbers by a common user, So we are using different data formats to code these binary numbers. ASCII, BCD, signed integers and unsigned integers are some of the data formats. The ASCII code is a 7-bit alpha-numeric code that represents decimal numbers, English alphabets and certain special characters. The ASCII stands for “American Standard code for Information Interchange”.

The term BCD stands for binary coded decimal, used for the decimal numbers from 0-9. An 8-bit register can store two BCD numbers. A signed integer can be both either negative or positive number. In 8085 microprocessor the most significant bit is used for the sign. Here 0 denotes positive sign and 1 denotes the negative sign. An integer without a sign is represented by all the 8-bits in a microprocessor register. So, the largest number that can be processed at one time is FFH. The numbers larger than 8-bits like 16, 24, 32 bits can be processed by dividing them in groups of 8-bits.

Store 8-bit data in memory
Program 1:

MVI A, 52H : "Store 32H in the accumulator"

STA 4000H : "Copy accumulator contents at address 4000H"

HLT : "Terminate program execution"

Program 2:

LXI H : "Load HL with 4000H"

MVI M : "Store 32H in memory location pointed by HL register pair (4000H)"

HLT : "Terminate program execution"

Note: The result of both programs will be the same. In program 1 direct addressing instruction is used, whereas in program 2 indirect addressing instruction is used.

Exchange the contents of memory locations
Statement: Exchange the contents of memory locations 2000H and 4000H.
Program 1:

LDA 2000H : "Get the contents of memory location 2000H into accumulator"

MOV B, A : "Save the contents into B register"

LDA 4000H : "Get the contents of memory location 4000Hinto accumulator"

STA 2000H : "Store the contents of accumulator at address 2000H"

MOV A, B : "Get the saved contents back into A register"

STA 4000H : "Store the contents of accumulator at address 4000H"

Program 2:

LXI H 2000H : "Initialize HL register pair as a pointer to memory location 2000H."

LXI D 4000H : "Initialize DE register pair as a pointer to memory location 4000H."

MOV B, M : "Get the contents of memory location 2000H into B register."

LDAX D : "Get the contents of memory location 4000H into A register."

MOV M, A : "Store the contents of A register into memory location 2000H."

MOV A, B : "Copy the contents of B register into accumulator."

STAX D : "Store the contents of A register into memory location 4000H."

HLT : "Terminate program execution."

Note: In Program 1, direct addressing instructions are used, whereas in Program 2, indirect addressing instructions are used.

Add two 8-bit numbers
Statement: Add the contents of memory locations 4000H and 4001H and place the result in memory location 4002H.
1.
Sample problem

2.
(4000H) = 14H

3.
(4001H) = 89H

4.
Result = 14H + 89H = 9DH

5.

6.
Source program

7.
LXI H 4000H : "HL points 4000H"

8.
MOV A, M : "Get first operand"

9.
INX H : "HL points 4001H"

10.
ADD M : "Add second operand"

11.
INX H : "HL points 4002H"

12.
MOV M, A : "Store result at 4002H"

13.
HLT : "Terminate program execution"

Subtract two 8-bit numbers
Statement: Subtract the contents of memory location 4001H from the memory location 2000H and place the result in memory location 4002H.

1.
Program –: Subtract two 8-bit numbers

2.
Sample problem:

3.
(4000H) = 51H

4.
(4001H) = 19H

5.
Result = 51H – 19H = 38H

6.

7.
Source program:

8.
LXI H, 4000H : "HL points 4000H"

9.
MOV A, M : "Get first operand"

10.
INX H : "HL points 4001H"

11.
SUB M : "Subtract second operand"

12.
INX H : "HL points 4002H"

13.
MOV M, A : "Store result at 4002H"

14.
HLT : "Terminate program execution"

Add two 16-bit numbers
Statement: Add the 16-bit number in memory locations 4000H and 4001H to the 16-bit number in memory locations 4002H and 4003H. The most significant eight bits of the two numbers to be added are in memory locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H with the most significant byte in memory location 4005H.

1.
Sample problem:

2.
(4000H) = 15H

3.
(4001H) = 1CH

4.
(4002H) = B7H

5.
(4003H) = 5AH

6.
Result = 1C15 + 5AB7H = 76CCH

7.
(4004H) = CCH

8.
(4005H) = 76H

9.

10.
Source Program 1:
11.
LHLD 4000H : "Get first 16-bit number in HL"

12.
XCHG : "Save first 16-bit number in DE"

13.
LHLD 4002H : "Get second 16-bit number in HL"

14.
MOV A, E : "Get lower byte of the first number"

15.
ADD L : "Add lower byte of the second number"

16.
MOV L, A : "Store result in L register"

17.
MOV A, D : "Get higher byte of the first number"

18.
ADC H : "Add higher byte of the second number with CARRY"

19.
MOV H, A : "Store result in H register"

20.
SHLD 4004H : "Store 16-bit result in memory locations 4004H and 4005H"

21.
HLT : "Terminate program execution"

1.
Source program 2:
2.
LHLD 4000H : Get first I6-bit number

3.
XCHG : Save first I6-bit number in DE

4.
LHLD 4002H : Get second I6-bit number in HL

5.
DAD D : Add DE and HL

6.
SHLD 4004H : Store I6-bit result in memory locations 4004H and 4005H.

7.
HLT : Terminate program execution

NOTE: In program 1, eight bit addition instructions are used (ADD and ADC) and addition is performed in two steps. First lower byte addition using ADD instruction and then higher byte addition using ADC instruction. In program 2, 16-bit addition instruction (DAD) is used.

Add contents of two memory locations
Statement: Add the contents of memory locations 40001H and 4001H and place the result in the memory locations 4002Hand 4003H.

1.
Sample problem:

2.
(4000H) = 7FH

3.
(400lH) = 89H

4.
 Result = 7FH + 89H = lO8H

5.
(4002H) = 08H

6.
(4003H) = 0lH

7.
Source program:

8.
LXI H, 4000H : "HL Points 4000H"

9.
MOV A, M : "Get first operand"

10.
INX H : "HL Points 4001H"

11.
ADD M : "Add second operand"

12.
INX H : "HL Points 4002H"

13.
MOV M, A : "Store the lower byte of result at 4002H"

14.
MVIA, 00 : "Initialize higher byte result with 00H"

15.
ADC A : "Add carry in the high byte result"

16.
INX H : "HL Points 4003H"

17.
MOV M, A : "Store the higher byte of result at 4003H"

18.
HLT : "Terminate program execution"

Subtract two 16-bit numbers
Statement: Subtract the 16-bit number in memory locations 4002H and 4003H from the 16-bit number in memory locations 4000H and 4001H. The most significant eight bits of the two numbers are in memory locations 4001H and 4003H. Store the result in memory locations 4004H and 4005H with the most significant byte in memory location 4005H.

1.
Sample problem:

2.
(4000H) = 19H

3.
(400IH) = 6AH

4.
(4004H) = I5H (4003H) = 5CH

5.
Result = 6A19H – 5C15H = OE04H

6.
(4004H) = 04H

7.
(4005H) = OEH

8.
Source program:

9.
LHLD 4000H : "Get first 16-bit number in HL"

10.
XCHG : "Save first 16-bit number in DE"

11.
LHLD 4002H : "Get second 16-bit number in HL"

12.
MOV A, E : "Get lower byte of the first number"

13.
SUB L : "Subtract lower byte of the second number"

14.
MOV L, A : "Store the result in L register"

15.
MOV A, D : "Get higher byte of the first number"

16.
SBB H : "Subtract higher byte of second number with borrow"

17.
MOV H, A : "Store l6-bit result in memory locations 4004H and 4005H"

18.
SHLD 4004H : "Store l6-bit result in memory locations 4004H and 4005H"

19.
HLT : "Terminate program execution"

Finding one’s complement of a number
Statement: Find the l’s complement of the number stored at memory location 4400H and store the complemented number at memory location 4300H.

1.
Sample problem:

2.
(4400H) = 55H

3.
Result = (4300B) = AAB

4.
Source program:

5.
LDA 4400B : "Get the number"

6.
CMA : "Complement number"

7.
STA 4300H : "Store the result"

8.
HLT : "Terminate program execution"

Finding Two’s complement of a number
Statement: Find the 2′s complement of the number stored at memory location 4200H and store the complemented number at memory location 4300H

1.
Sample problem:

2.
(4200H) = 55H

3.
Result = (4300H) = AAH + 1 = ABH

4.
Source program:

5.
LDA 4200H : "Get the number"

6.
CMA : "Complement the number"

7.
ADI, 01 H : "Add one in the number"

8.
STA 4300H : "Store the result"

9.
HLT : "Terminate program execution"

Pack the unpacked BCD numbers
Statement: Pack the two unpacked BCD numbers stored in memory locations 4200H and 4201H and store result in memory location 4300H. Assume the least significant digit is stored at 4200H.

1.
Sample problem:

2.
(4200H) = 04

3.
(4201H) = 09

4.
Result = (4300H) = 94

5.
Source program:

6.
LDA 4201H : "Get the Most significant BCD digit"

7.
RLC

8.
RLC

9.
RLC

10.
RLC : "Adjust the position of the second digit (09 is changed to 90)"

11.
ANI FOH : "Make least significant BCD digit zero"

12.
MOV C, A : "store the partial result"

13.
LDA 4200H : "Get the lower BCD digit"

14.
ADD C : "Add lower BCD digit"

15.
STA 4300H : "Store the result"

16.
HLT : "Terminate program execution"

Unpack a BCD number
Statement: Two digit BCD number is stored in memory location 4200H. Unpack the BCD number and store the two digits in memory locations 4300H and 4301H such that memory location 4300H will have lower BCD digit.

1.
Sample problem:

2.
(4200H) = 58

3.
Result = (4300H) = 08 and

4.
 (4301H) = 05

5.
Source program:

6.
LDA 4200H : "Get the packed BCD number"

7.
ANI FOH : "Mask lower nibble"

8.
RRC

9.
RRC

10.
RRC

11.
RRC : "Adjust higher BCD digit as a lower digit"

12.
STA 4301H : "Store the partial result"

13.
LDA 4200H : "Get the original BCD number"

14.
ANI OFH : "Mask higher nibble"

15.
STA 4201H : "Store the result"

16.
HLT : "Terminate program execution"

Execution format of instructions
Statement: Read the program given below and state the contents of all registers after the execution of each instruction in sequence.

1.
Main program:

2.
4000H LXI SP, 27FFH

3.
4003H LXI H, 2000H

4.
4006H LXI B, 1020H

5.
4009H CALL SUB

6.
400CH HLT

7.
Subroutine program:

8.
4100H SUB: PUSH B

9.
4101H PUSH H

10.
4102H LXI B, 4080H

11.
4105H LXI H, 4090H

12.
4108H SHLD 2200H

13.
4109H DAD B

14.
410CH POP H

15.
410DH POP B

16.
410EH RET

Right shift, bit of data(8 bit and 16 bit)
Statement: Write a program to shift an eight bit data four bits right. Assume data is in register C.

1.
Sample problem:

2.
(4200H) = 58

3.
Result = (4300H) = 08 and

4.
 (4301H) = 05

5.

6.
Source program 1:

7.
MOV A, C

8.
RAR

9.
RAR

10.
RAR

11.
RAR

12.
MOV C, A

13.
HLT

Statement: Write a program to shift a 16 bit data, 1 bit right. Assume that data is in BC register pair.

1.
Source program 2

2.
MOV A, B

3.
RAR

4.
MOV B, A

5.
MOV A, C

6.
RAR

7.
MOV C, A

8.
HLT

Left Shifting of a 16-bit data
Statement: Program to shift a 16-bit data 1 bit left. Assume data is in the HL register

1.
HL = 1025 = 0001 0000 0010 0101

2.

3.
 HL = 0001 0000 0010 0101

4.
 + HL = 0001 0000 0010 0101

5.

6.
Result = 0010 0000 0100 1010

Alter the contents of flag register in 8085

Statement: Write a set of instructions to alter the contents of flag register in 8085.

1.
PUSH PSW : "Save flags on stack"

2.
POP H : "Retrieve flags in ‘L’"

3.
MOV A, L : "Flags in accumulator"

4.
CMA : "Complement accumulator"

5.
MOV L, A : "Accumulator in ‘L’"

6.
PUSH H : "Save on stack"

7.
POP PSW : "Back to flag register"

8.
HLT : "Terminate program execution"

MULTIPLICATION OF TWO 8 BIT NUMBERS
AIM:

 To perform the multiplication of two 8 bit numbers using 8085.

ALGORITHM:

 1) Start the program by loading HL register pair with address of memory location.

 2) Move the data to a register (B register).

 3) Get the second data and load into Accumulator.

 Add the two register contents

 4) Check for carry.

 Increment the value of carry.

 5) Check whether repeated addition is over and store the value of product and carry

 in memory location.

 6) Terminate the program.

PROGRAM:

 MVI D,00 Initialize register D to 00

 MVI A,00 Initialize Accumulator content to 00

 LXI H,4150

 MOV B,M Get the first number in B - reg

 INX H

 MOV C,M Get the second number in C- reg.

LOOP: ADD B Add content of A - reg to register B.

 JNC NEXT Jump on no carry to NEXT.

 INR D Increment content of register D

NEXT: DCR C Decrement content of register C.

 JNZ LOOP Jump on no zero to address

 STA 4152 Store the result in Memory

 MOV A, D

 STA 4153 Store the MSB of result in Memory

 HLT Terminate the program.

OBSERVATION:

 FF (4150)

 Input:

 FF (4151)

 01 (4152)

 Output:

 FE (4153)
DIVISION OF TWO 8 BIT NUMBERS
AIM:

 To perform the division of two 8 bit numbers using 8085.

ALGORITHM:

 1) Start the program by loading HL register pair with address of memory location.

 2) Move the data to a register(B register).

 3) Get the second data and load into Accumulator.

 4) Compare the two numbers to check for carry.

 5) Subtract the two numbers.

 6) Increment the value of carry .

 7) Check whether repeated subtraction is over and store the value of product and

 carry in memory location.

 8) Terminate the program.

PROGRAM:

 LXI H, 4150

 MOV B,M Get the dividend in B – reg.

 MVI C,00 Clear C – reg for qoutient

 INX H

 MOV A,M Get the divisor in A – reg.

NEXT: CMP B Compare A - reg with register B.

 JC LOOP Jump on carry to LOOP

 SUB B Subtract A – reg from B- reg.

 INR C Increment content of register C.

 JMP NEXT Jump to NEXT

 LOOP: STA 4152 Store the remainder in Memory

 MOV A,C

 STA 4153 Store the quotient in memory

 HLT Terminate the program.

OBSERVATION:

 Input:

 F (4150)

 FF (4251)

 Output:

 01 (4152) ---- Remainder

 FE (4153) ---- Quotient

Interrupts In 8085:
Interrupt is a mechanism by which an I/O or an instruction can suspend the normal execution of processor and get itself serviced. Generally, a particular task is assigned to that interrupt signal. In the microprocessor based system the interrupts are used for data transfer between the peripheral devices and the microprocessor.
Interrupt Service Routine(ISR)

A small program or a routine that when executed services the corresponding interrupting source is called as an ISR.
Maskable/Non-Maskable Interrupt

An interrupt that can be disabled by writing some instruction is known as Maskable Interrupt otherwise it is called Non-Maskable Interrupt.
There are 6 pins available in 8085 for interrupt:
1. TRAP

2. RST 7.5

3. RST6.5

4. RST5.5

5. INTR

6. INTA

Execution of Interrupts
When there is an interrupt requests to the Microprocessor then after accepting the interrupts Microprocessor send the INTA (active low) signal to the peripheral. The vectored address of particular interrupt is stored in program counter. The processor executes an interrupt service routine (ISR) addressed in program counter.

There are two types of interrupts used in 8085 Microprocessor:
1. Hardware Interrupts

2. Software Interrupts

Software Interrupts
A software interrupts is a particular instructions that can be inserted into the desired location in the program. There are eight Software interrupts in 8085 Microprocessor. From RST0 to RST7.
1. RST0

2. RST1

3. RST2

4. RST3

5. RST4

6. RST5

7. RST6

8. RST7

They allow the microprocessor to transfer program control from the main program to the subroutine program. After completing the subroutine program, the program control returns back to the main program.
We can calculate the vector address of these interrupts using the formula given below:
Vector Address = Interrupt Number * 8
For Example:

RST2: vector address=2*8 = 16

RST1: vector address=1*8 = 08

RST3: vector address=3*8 = 24

Vector address table for the software interrupts:
	Interrupt
	Vector Address

	RST0
RST1
	0000H
0008H

	RST2
RST3
	0010H
0018H

	RST4
RST5
	0020H
0028H

	RST6
RST7
	0030H
0038H

Hardware Interrupt
There are 6 interrupt pins in the microprocessor used as Hardware Interrrupts given below:
1. TRAP

2. RST7.5

3. RST6.5

4. RST5.5

5. INTR

Note:

INTA is not an interrupt. INTA is used by the Microprocessor for sending the acknowledgement. TRAP has highest priority and RST7.5 has second highest priority and so on.

The Vector address of these interrupts are given below:
	Interrupt
	Vector Address

	RST7.5
	003CH

	RST6.5
	0034H

	RST5.5
	002CH

	TRAP
	0024H

TRAP
It is non maskable edge and level triggered interrupt. TRAP has the highest priority and vectors interrupt. Edge and level triggered means that the TRAP must go high and remain high until it is acknowledged. In case of sudden power failure, it executes a ISR and send the data from main memory to backup memory.
As we know that TRAP cannot be masked but it can be delayed using HOLD signal. This interrupt transfers the microprocessor's control to location 0024H.
TRAP interrupts can only be masked by reseting the microprocessor. There is no other way to mask it.

RST7.5

It has the second highest priority. It is maskable and edge level triggered interrupt. The vector address of this interrupt is 003CH. Edge sensitive means input goes high and no need to maintain high state until it is recognized.

It can also be reset or masked by resetting microprocessor. It can also be resetted by DI instruction.

RST6.5 and RST5.5
These are level triggered and maskable interrupts. When RST6.5 pin is at logic 1, INTE flip-flop is set. RST 6.5 has third highest priority and RST 5.5 has fourth highest priority.
It can be masked by giving DI and SIM instructions or by reseting microprocessor.
INTR
It is level triggered and maskable interrupt. The following sequence of events occurs when INTR signal goes high:
1. The 8085 checks the status of INTR signal during execution of each instruction.

2. If INTR signal is high, then 8085 complete its current instruction and sends active low interrupt acknowledge signal, if the interrupt is enabled.

3. On receiving the instruction, the 8085 save the address of next instruction on stack and execute received instruction.
4. It has the lowest priority. It can be disabled by reseting the microprocessor or by DI and SIM instruction

Instruction Set 8085:
1. Control

2. Logical

3. Branching

4. Arithmetic

5. Data Transfer

Control Instructions

	 Opcode
	 Operand
	Explanation of Instruction
	 Description

	 NOP
	none
	No operation
	No operation is performed. The instruction is fetched and decoded. However no operation is executed.

Example: NOP

	HLT
	none
	Halt and enter wait state
	The CPU finishes executing the current instruction and halts any further execution. An interrupt or reset is necessary to exit from the halt state.

Example: HLT

	 DI
	none
	Disable interrupts
	The interrupt enable flip-flop is reset and all the interrupts except the TRAP are disabled. No flags are affected.

Example: DI

	EI
	none
	Enable interrupts
	The interrupt enable flip-flop is set and all interrupts are enabled. No flags are affected. After a system reset or the acknowledgement of an interrupt, the interrupt enable flipflop is reset, thus disabling the interrupts. This instruction is
necessary to renewable the interrupts (except TRAP).

Example: EI

	 RIM
	none
	Read interrupt mas
	This is a multipurpose instruction used to read the status of interrupts 7.5, 6.5, 5.5 and read serial data input bit. The instruction loads eight bits in the accumulator with the following interpretations.

Example: RIM

	SIM
	none
	Set interrupt mask
	This is a multipurpose instruction and used to implement the 8085 interrupts 7.5, 6.5, 5.5, and serial data output. The instruction interprets the accumulator contents as follows.

Example: SIM

LOGICAL INSTRUCTIONS

	 Opcode
	 Operand
	Explanation of Instruction
	 Description

	 CMP
	R
M
	Compare register or memory with accumulator
	The contents of the operand (register or memory) are M compared with the contents of the accumulator. Both contents are preserved . The result of the comparison is shown by setting the flags of the PSW as follows:

if (A) < (reg/mem): carry flag is set
if (A) = (reg/mem): zero flag is set
if (A) > (reg/mem): carry and zero flags are reset

Example: CMP B or CMP M

	CPI
	8-bit data
	Compare immediate with accumulator
	The second byte (8-bit data) is compared with the contents of the accumulator. The values being compared remain unchanged. The result of the comparison is shown by setting the flags of the PSW as follows:

if (A) < data: carry flag is set
if (A) = data: zero flag is set
if (A) > data: carry and zero flags are reset

Example: CPI 89H

	 ANA
	R
M
	Logical AND register or memory with accumulator
	The contents of the accumulator are logically ANDed with M the contents of the operand (register or memory), and the result is placed in the accumulator. If the operand is a memory location, its address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the operation. CY is reset. AC is set.

Example: ANA B or ANA M

	 ANI
	 8-bit data
	Logical AND immediate with accumulator
	The contents of the accumulator are logically ANDed with the
8-bit data (operand) and the result is placed in the
accumulator. S, Z, P are modified to reflect the result of the
operation. CY is reset. AC is set.

Example: ANI 86H

	 XRA
	R
M
	Exclusive OR register or memory with accumulator
	The contents of the accumulator are Exclusive ORed with M the contents of the operand (register or memory), and the result is placed in the accumulator. If the operand is a memory location, its address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the operation. CY and AC are reset.

Example: XRA B or XRA M

	 XRI
	 8-bit data
	Exclusive OR immediate with accumulator
	The contents of the accumulator are Exclusive ORed with the 8-bit data (operand) and the result is placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY and AC are reset.

Example: XRI 86H

	ORA
	R
M
	Logical OR register or memory with accumulator
	The contents of the accumulator are logically ORed with M the contents of the operand (register or memory), and the result is placed in the accumulator. If the operand is a memory location, its address is specified by the contents of HL registers. S, Z, P are modified to reflect the result of the operation. CY and AC are reset.

Example: ORA B or ORA M

	ORI
	 8-bit data
	Logical OR immediate with accumulator
	The contents of the accumulator are logically ORed with the 8-bit data (operand) and the result is placed in the accumulator. S, Z, P are modified to reflect the result of the operation. CY and AC are reset.

Example: ORI 86H

	RLC
	 none
	Rotate accumulator left
	Each binary bit of the accumulator is rotated left by one position. Bit D7 is placed in the position of D0 as well as in the Carry flag. CY is modified according to bit D7. S, Z, P, AC are not affected.

Example: RLC

	RRC
	none
	Rotate accumulator right
	Each binary bit of the accumulator is rotated right by one position. Bit D0 is placed in the position of D7 as well as in the Carry flag. CY is modified according to bit D0. S, Z, P, AC are not affected.

Example: RRC

	 RAL
	 none
	Rotate accumulator left through carry
	Each binary bit of the accumulator is rotated left by one position through the Carry flag. Bit D7 is placed in the Carry flag, and the Carry flag is placed in the least significant position D0. CY is modified according to bit D7. S, Z, P, AC are not affected.

Example: RAL

	 RAR
	 none
	Rotate accumulator right through carry
	Each binary bit of the accumulator is rotated right by one position through the Carry flag. Bit D0 is placed in the Carry flag, and the Carry flag is placed in the most significant position D7. CY is modified according to bit D0. S, Z, P, AC are not affected.

Example: RAR

	 CMA
	 none
	Complement accumulator
	The contents of the accumulator are complemented. No flags are affected.

Example: CMA

	CMC
	 none
	Complement carry
	The Carry flag is complemented. No other flags are affected.

Example: CMC

	 STC
	 none
	Set Carry
	Set Carry

Example: STC

BRANCHING INSTRUCTIONS
	 Opcode
	 Operand
	Explanation of Instruction
	 Description

	 JMP
	16-bit address
	Jump unconditionally
	The program sequence is transferred to the memory location specified by the 16-bit address given in the operand.

Example: JMP 2034H or JMP XYZ

	Opcode

Description

Flag Status

JC
Jump on Carry
CY = 1
JNC
Jump on no Carry
CY = 0
JP
Jump on positive
S = 0
JM
Jump on minus
S = 1
JZ
Jump on zero
Z = 1
JNZ
Jump on no zero
Z = 0
JPE
Jump on parity even
P = 1
JPO
Jump on parity odd
P = 0

	 16-bit address
	Jump conditionally
	The program sequence is transferred to the memory location specified by the 16-bit address given in the operand based on the specified flag of the PSW as described below.

Example: JZ 2034H or JZ XYZ

	Opcode

Description

Flag Status

CC
Call on Carry
CY = 1
CNC
Call on no Carry
CY = 0
CP
Call on positive
S = 0
CM
Call on minus
S = 1
CZ
Call on zero
Z = 1
CNZ
Call on no zero
Z = 0
CPE
Call on parity even
P = 1
CPO
Call on parity odd
P = 0

	 16-bit address
	Unconditional subroutine call
	The program sequence is transferred to the memory location specified by the 16-bit address given in the operand. Before the transfer, the address of the next instruction after CALL (the contents of the program counter) is pushed onto the stack.

Example: CALL 2034H or CALL XYZ

	 RET
	none
	Return from subroutine unconditionally
	The program sequence is transferred from the subroutine to the calling program. The two bytes from the top of the stack are copied into the program counter,and program execution begins at the new address.

Example: RET

	Opcode

Description

Flag Status

RC
Return on Carry
CY = 1
RNC
Return on no Carry
CY = 0
RP
Return on positive
S = 0
RM
Return on minus
S = 1
RZ
Return on zero
Z = 1
RNZ
Return on no zero
Z = 0
RPE
Return on parity even
P = 1
RPO
Return on parity odd
P = 0

	none
	Return from subroutine conditionally
	The program sequence is transferred from the subroutine to the calling program based on the specified flag of the PSW as described below. The two bytes from the top of the stack are copied into the program counter, and program execution begins at the new address.

Example: RZ

	 PCHL
	 none
	Load program counter with HL contents
	 The contents of registers H and L are copied into the program counter. The contents of H are placed as the high-order byte and the contents of L as the low-order byte.

Example: PCHL

	 RST

	0-7
	Restart
	The RST instruction is equivalent to a 1-byte call instruction to one of eight memory locations depending upon the number. The instructions are generally used in conjunction with interrupts and inserted using external hardware. However these can be used as software instructions in a program to transfer program execution to one of the eight locations. The addresses are:

Instruction

Restart Address

RST 0
0000H
RST1
0008H
RST 2
0010H
RST 3
0018H
RST 4
0020H
RST 5
0028H
RST 6
0030H
RST 7
0038H
The 8085 has four additional interrupts and these interrupts generate RST instructions internally and thus do not require any external hardware. These instructions and their Restart addresses are:

Interrupt

Restart Address

TRAP
0024H
RST 5.5
002CH
RST 6.5
0034H
RST 7.5
003CH

Arithmetic Instructions

	 Opcode
	 Operand
	Explanation of Instruction
	 Description

	 ADD
	 R
M
	Add register or memory, to accumulator
	The contents of the operand (register or memory) are added to the contents of the accumulator and the result is stored in the accumulator. If the operand is a memory location, its location is specified by the contents of the HL registers. All flags are modified to reflect the result of the addition.

Example: ADD B or ADD M

	 ADC
	 R
M
	Add register to accumulator with carry
	The contents of the operand (register or memory) and M the Carry flag are added to the contents of the accumulator and the result is stored in the accumulator. If the operand is a memory location, its location is specified by the contents of the HL registers. All flags are modified to reflect the result of the addition.

Example: ADC B or ADC M

	 ADI
	 8-bit data
	Add immediate to accumulator
	The 8-bit data (operand) is added to the contents of the accumulator and the result is stored in the accumulator. All flags are modified to reflect the result of the addition.

Example: ADI 45H

	 ACI
	8-bit data
	Add immediate to accumulator with carry
	The 8-bit data (operand) and the Carry flag are added to the contents of the accumulator and the result is stored in the accumulator. All flags are modified to reflect the result of the addition.

Example: ACI 45H

	 LXI
	 Reg. pair, 16-bit data
	Load register pair immediate
	The instruction loads 16-bit data in the register pair designated in the operand.

Example: LXI H, 2034H or LXI H, XYZ

	 DAD
	 Reg. pair
	Add register pair to H and L registers
	The 16-bit contents of the specified register pair are added to the contents of the HL register and the sum is stored in the HL register. The contents of the source register pair are not altered. If the result is larger than 16 bits, the CY flag is set. No other flags are affected.

Example: DAD H

	SUB
	 R
M
	Subtract register or memory from accumulator
	The contents of the operand (register or memory) are subtracted from the contents of the accumulator, and the result is stored in the accumulator. If the operand is a memory location, its location is specified by the contents of the HL registers. All flags are modified to reflect the result of the subtraction.

Example: SUB B or SUB M

	 SBB
	 R
M
	Subtract source and borrow from accumulator
	The contents of the operand (register or memory) and M the Borrow flag are subtracted from the contents of the accumulator and the result is placed in the accumulator. If the operand is a memory location, its location is specified by the contents of the HL registers. All flags are modified to reflect the result of the subtraction.

Example: SBB B or SBB M

	 SUI
	 8-bit data
	Subtract immediate from accumulator
	The 8-bit data (operand) is subtracted from the contents of the accumulator and the result is stored in the accumulator. All flags are modified to reflect the result of the subtraction.

Example: SUI 45H

	SBI
	 8-bit data
	Subtract immediate from accumulator with borrow
	The contents of register H are exchanged with the contents of register D, and the contents of register L are exchanged with the contents of register E.

Example: XCHG

	 INR
	 R
M
	Increment register or memory by 1
	The contents of the designated register or memory) are incremented by 1 and the result is stored in the same place. If the operand is a memory location, its location is specified by the contents of the HL registers.

Example: INR B or INR M

	INX
	 R
	Increment register pair by 1
	The contents of the designated register pair are incremented by 1 and the result is stored in the same place.

Example: INX H

	 DCR
	 R
M
	Decrement register or memory by 1
	The contents of the designated register or memory are M decremented by 1 and the result is stored in the same place. If the operand is a memory location, its location is specified by the contents of the HL registers.

Example: DCR B or DCR M

	DCX
	 R
	Decrement register pair by 1
	The contents of the designated register pair are decremented by 1 and the result is stored in the same place.

Example: DCX H

	DAA
	 none
	Decimal adjust accumulator
	The contents of the accumulator are changed from a binary value to two 4-bit binary coded decimal (BCD) digits. This is the only instruction that uses the auxiliary flag to perform the binary to BCD conversion, and the conversion procedure is described below. S, Z, AC, P, CY flags are altered to reflect the results of the operation.

If the value of the low-order 4-bits in the accumulator is greater than 9 or if AC flag is set, the instruction adds 6 to the low-order four bits.

If the value of the high-order 4-bits in the accumulator is greater than 9 or if the Carry flag is set, the instruction adds 6 to the high-order four bits.

Example: DAA

Data Transfer Instructions

	 Opcode
	 Operand
	Explanation of Instruction
	 Description

	 MOV
	 Rd, Rs
M, Rs
Rd, M
	Copy from source(Rs) to destination(Rd)
	 This instruction copies the contents of the source register into the destination register; the contents of the source register are not altered. If one of the operands is a memory location, its location is specified by the contents of the HL registers.

Example: MOV B, C or MOV B, M

	 MVI
	 Rd, data
M, data
	Move immediate 8-bit
	The 8-bit data is stored in the destination register or memory. If the operand is a memory location, its location is specified by the contents of the HL registers.

Example: MVI B, 57H or MVI M, 57H

	 LDA
	 16-bit address
	Load accumulator
	The contents of a memory location, specified by a 16-bit address in the operand, are copied to the accumulator. The contents of the source are not altered.

Example: LDA 2034H

	 LDAX
	 B/D Reg. pair
	Load accumulator indirect
	The contents of the designated register pair point to a memory location. This instruction copies the contents of that memory location into the accumulator. The contents of either the register pair or the memory location are not altered.

Example: LDAX B

	 LXI
	 Reg. pair, 16-bit data
	Load register pair immediate
	The instruction loads 16-bit data in the register pair designated in the operand.

Example: LXI H, 2034H or LXI H, XYZ

	 LHLD
	 16-bit address
	Load H and L registers direct
	 The instruction copies the contents of the memory location pointed out by the 16-bit address into register L and copies the contents of the next memory location into register H. The contents of source memory locations are not altered.

Example: LHLD 2040H

	 STA
	 16-bit address
	16-bit address
	The contents of the accumulator are copied into the memory location specified by the operand. This is a 3-byte instruction, the second byte specifies the low-order address and the third byte specifies the high-order address.

Example: STA 4350H

	 STAX
	 Reg. pair
	Store accumulator indirect
	The contents of the accumulator are copied into the memory location specified by the contents of the operand (register pair). The contents of the accumulator are not altered.

Example: STAX B

	 SHLD
	 16-bit address
	Store H and L registers direct
	The contents of register L are stored into the memory location specified by the 16-bit address in the operand and the contents of H register are stored into the next memory location by incrementing the operand. The contents of registers HL are not altered. This is a 3-byte instruction, the second byte specifies the low-order address and the third byte specifies the high-order address.

Example: SHLD 2470H

	XCHG
	 none
	Exchange H and L with D and E
	The contents of register H are exchanged with the contents of register D, and the contents of register L are exchanged with the contents of register E.

Example: XCHG

	 SPHL
	none
	Copy H and L registers to the stack pointer
	The instruction loads the contents of the H and L registers into
the stack pointer register, the contents of the H register provide the high-order address and the contents of the L register provide the low-order address. The contents of the H
and L registers are not altered.

Example: SPHL

	 XTHL
	 none
	Exchange H and L with top of stack
	The contents of the L register are exchanged with the stack location pointed out by the contents of the stack pointer register. The contents of the H register are exchanged with the next stack location (SP+1); however, the contents of the stack pointer register are not altered.

Example: XTHL

	 PUSH
	 Reg. pair
	Push register pair onto stack
	The contents of the register pair designated in the operand are copied onto the stack in the following sequence. The stack pointer register is decremented and the contents of the highorder register (B, D, H, A) are copied into that location. The stack pointer register is decremented again and the contents of the low-order register (C, E, L, flags) are copied to that location.

Example: PUSH B or PUSH A

	 POP
	 Reg. pair
	Pop off stack to register pair
	The contents of the memory location pointed out by the stack pointer register are copied to the low-order register (C, E, L, status flags) of the operand. The stack pointer is incremented by 1 and the contents of that memory location are copied to the high-order register (B, D, H, A) of the operand. The stack pointer register is again incremented by 1.

Example: POP H or POP A

	OUT
	 8-bit port address
	Output data from accumulator to a port with 8-bit address
	 The contents of the accumulator are copied into the I/O port specified by the operand.

Example: OUT F8H

	 IN
	 8-bit port address
	Input data to accumulator from a port with 8-bit address
	The contents of the input port designated in the operand are read and loaded into the accumulator.

Example: IN 8CH

IO interfacing to 8085:
There are two techniques through which devices can be interfaced to microprocessor.

1. Memory mapped I/O

2. Peripheral mapped I/O or I/O mapped I/O

Memory mapped I/O:
I/O devices are interfaced using address from memory space. That means IO device address are part of addresses given to memory locations.8085 uses 16-bit address to memory interfacing. So any address between 0000H-FFFFH can be given to each peripheral. But the addresses given to peripheral can’t be used for memory.

 Memory control signals are used as read and write control signals for peripherals. And all the operations that can be performed on memory can also be performed on peripherals. No need of using IO instructions such as IN, OUT.

IO mapped IO:
In this method separate address space is given to IO devices. Each IO device is given a 8-bit address. Hence maximum 256 devices can be interfaced to the processor. The address range for the IO devices is 00H-FFH. IO control signals are used to perform read, write operations.

For reading data from IO device or writing data to IO device IN, OUT instructions needs to be used. Arithmetic and logical operations can’t be performed directly on IO devices as in memory mapped IO.

IO devices can be interfaced, by using buffers for simple IO i.e. by using address decoding circuit to enable buffer. For handshake IO or to interface more peripherals ICs like 8255 peripheral programmable interface (PPI) can be used

Memory interfacing to 8085
8085 has 16 bit address bus; hence it can access 216 no. of memory locations, which is equal to 64KB memory. For any microprocessor memory is required to store program as well as data. Since microprocessor doesn’t have on-chip memory, we need to connect it externally. So it requires addressing mechanism. The following are the steps involved in interfacing memory with 8085 processor.

1. First decide the size of memory requires to be interfaced. Depending on this we can say how many address lines are required for it. For example if you want to interface 4KB (212) memory it requires 12 address lines. Remaining address lines can be used in address decoding.

2. Depending on the size of memory required and given address range, construct address decoding circuitry. This address decoding circuitry can be implemented with NAND gates and/or decoders or using PAL (when board size is a constraint).

3. Connect data bus of memory to processor data bus.

4. Generate the control signals required for memory using IO/M’, WR’, RD’ signals of 8085 processor.

Example:

Interface 4KB memory to 8085 with starting address A000H.

1. 4KB memory requires 12 address lines for addressing as already mentioned. But 8085 has 16 address lines. Hence four of address lines are used for address decoding

2. Given that starting address for memory is A000H. So for 4KB memory ending address becomes A000H+0FFFH (4KB) = AFFFH.

 A0-A11 address lines are directly connected to address bus of memory chip. A12-A15 are used for generating chip select signal for memory chip.

Address decoding circuit using 3X8 decoder:

A15 line is use for enabling 74x138 decoder chip. A12, A13, A14 lines are connected to 74X138 chip as inputs. When theses lines are 010 output should be ‘0’. This is provided at O2 pin of 74X138 chip.

Address decoding circuit using only NAND gates:

A15, A14, A13, A12 inputs should be 1010, for enabling the chip. So the circuit for this is as shown above.

Types of address decoding:
There are two types of address decoding mechanism, based on address lines used for generating chip select signal.

1. Absolute decoding

2. Partial decoding

Absolute decoding:
All the higher order lines of microprocessor, left after using the required signals for memory are completely used for generating chip select signal as shown in above example. This type of decoding is called absolute decoding.

Partial decoding:
Only some of the address lines of microprocessor left after using the required signals for memory are used for generating chip select signal. Because of this multiple address ranges will be formed. If total memory space is not required for the system then, this type of address decoding can be used. The advantage of this technique is fewer components are required for memory interfacing because of this board size reduces and in turn cost reduces.

Example:

Connect 512 bytes of memory to 8085

1. For interfacing 512 bytes 9 address lines are required. So A0-A8 can be used to directly connect to address bus of memory.

2. In the remaining A9-A15 for example only A15-A12 are used for generating chip select signal. A11-A9 are don’t care signals.

Because of the don’t care signals the address range can be

0000 to 01FF

0200 to 03FF

0400 to 05FF

0600 to 07FF

0800 to 09FF

0A00 to 0BFF

0C00 to 0DFF

0E00 to 0FFF

Address decoding circuit:

[image: image5.png]
DEPARTMENT OF EEE
Page 1

